

INMAFEED K1013

- Technical Datasheet

The feedstock is based on an alumina powder (Al_2O_3 , 99.8 %) and a wax based binder system for the powder injection moulding process.

Injection moulding of this feedstock is possible on standard injection moulding machines. Due to the abrasive behaviour of ceramic powder we strongly recommend production with cylinder, screw and mould made from hard metal only.

Green parts need a binder removal in a two-step debinding process before being sintered.

First debinding step is dissolving the binder in a water bath.

In the second debinding step the remaining binder is thermally removed.

These general guidelines are based on the processing of test parts with a wall thickness of 5mm.

The recommendations are considered to work as a standard guideline and have to be adapted to individual wall-thickness and part-design. For more details please contact us.

Feedstock: Specification

Typical material properties

Product	Feedstock for ceramic injection moulding
	process
Binder basis	Polyolefine based binder system
Appearance	White to greyish granulates
Storage and Lifetime	Product can be used for approx. 1 year
	after opening if stored dry at room
	temperature. Vessel has to be closed
	airtight thoroughly after feedstock
	withdrawal.
Quality after sintering	Al ₂ O ₃ , 99.8 %
Density	~ 3.94 g/cm ³
Shrinkage (approx.)	16.5 %
Mould factor (approx.)	1.19

Typical processing properties

Mould temperatures	50 – 60 °C
Temperatures heating zones and nozzle	155 – 165 °C
Debinding process	Two step debinding process
First step	Water bath
Second step	Thermal debinding up to 300 °C
Sintering temperature	T _{max} 1600 °C, in air

INMAFEED K1013

Recommendation Injection Moulding Process

Settings Temperature	Recommendation
Mould nozzle side	57 °C
Mould ejector side	57 °C
Material feeding zone	40 °C
1. Heating zone	157 °C
2. Heating zone	158 °C
3. Heating zone	159 °C
4. Heating zone	160 °C
Nozzle band	160 °C

Settings injection moulding	Recommendation
Rotation speed of screw	6 m/min
Back pressure	20 bar
Decompression	0.25 cm ³
Decompression speed	0.5 cm ³ /s
Injection speed	5 – 30 cm ³ /s
Holding pressure	¹ / ₃ - ² / ₃ of switch over point pressure
Holding pressure time	0.5 – 2.5 sec