

INMAFEED K1013

- Technisches Datenblatt

Der Feedstock basiert auf einem Aluminiumoxid-Pulver (Al₂O₃, 99,8 %) und einem wachsbasierten Bindersystem für den Pulver-Spritzgießprozess.

Das Spritzgießen dieses Feedstocks ist auf einer Standardspritzgießmaschine möglich. Bedingt durch die materialeigene Abrasivität von keramischem Pulver wird der Einsatz von Zylindern, Schnecken und Werkzeuginneren empfohlen, die aus Hartmetall gefertigt sind.

Die hergestellten Bauteile sind, bevor sie der Sinterung zugeführt werden können, in einem zweistufigen Entbinderungsprozess zu entbindern.

Der erste Entbinderschritt umfasst das Herauslösen des Binders in einem Wasserbad.

Im zweiten Entbinderungsschritt wird der restliche Binder thermisch herausgelöst.

Diese allgemeinen Richtlinien basieren auf einer Wandstärke von ca. 5mm. Bitte berücksichtigen Sie bei Anwendung dieser allgemeinen Empfehlungen unbedingt, dass es sich hierbei ausschließlich um Richtwerte handelt, die in der Praxis, entsprechend der jeweiligen Bauteil-Wandstärken und -gestaltung, optimiert werden sollten.

Wir beraten Sie gerne anhand der bauteilspezifischen Daten.

Feedstock Kennwerte

Typische Materialeigenschaften

Produkt	Feedstock für den keramischen
	Spritzgießprozess
Binderbasis	Polyolefinbasiertes Bindersystem
Aussehen	Weißes bis gräuliches Granulat
Lagerung und Haltung	Bei trockener Lagerung und
	Raumtemperatur kann die
	Feedstockmenge pro Verpackungseinheit
	bis zu einem Jahr nach Öffnung eingesetzt
	werden. Nach Materialentnahme muss
	der Behälter wieder luftdicht verschlossen
	werden.
Typische Zusammensetzung nach dem Sintern	Al ₂ O ₃ , 99,8 %
Theoretische Dichte	~ 3,94 g/cm³
Schwindung, ca.	16,5 %
Werkzeugaufmaß-Faktor, ca.	1,19

Typische Verarbeitungseigenschaften

Werkzeugtemperaturen	50 − 60 °C
Verarbeitungstemperaturen Spritzgießen	155 – 165 °C
Entbinderung	Zweistufig
Erste Entbinderungsstufe	Wässrige Entbinderung
Zweite Entbinderungsstufe	Thermisch bis 300 °C
Sintertemperatur	T _{max} 1600 °C, an Luft

INMAFEED K1013

Verarbeitungsempfehlung Spritzgießprozess

Einstellwerte Temperatur	Empfehlung
Werkzeug Vorlauftemp. Düsenseite	57 °C
erkzeug Vorlauftemp. Auswerferseite	57 °C
Temperatur Einzugszone	40 °C
1. Zylinderheizband	157 °C
2. Zylinderheizband	158 °C
3. Zylinderheizband	159 °C
4. Zylinderheizband	160 °C
Düsenheizband	160 °C

Einstellwerte Spritzgießen	Empfehlung
Schneckenumfangsgeschwindigkeit	6 m/min
Staudruck	20 bar
Dekompressionshub	0,25 cm³
Dekompressionsgeschwindigkeit	0,5 cm³/s
Einspritzgeschwindigkeit	5 – 30 cm ³ /s
Nachdruck	$\frac{1}{3} - \frac{2}{3}$ des Umschaltspritzdruckes
Nachdruckzeit	0,5 – 2,0 s